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A finite-volume method is presented for the computation of compressible flows of
two immiscible fluids at very different densities. A novel ingredient in the method is
a linearized, two-fluid Osher scheme, allowing for flux computations in the case of
different fluids (e.g., water and air) left and right of a cell face. A level-set technique is
employed to distinguish between the two fluids. The level-set equation is incorporated
into the system of hyperbolic conservation laws. Fixes are presented for the solution
errors (pressure oscillations) that may occur near two-fluid interfaces when applying
a capturing method. The fixes are analyzed and tested. For two-fluid flows with
arbitrarily large density ratios, a simple variant of the ghost-fluid method appears to
be a perfect remedy. Computations for compressible water–air flows yield perfectly
sharp, pressure-oscillation-free interfaces. The masses of the separate fluids appear
to be conserved up to first-order accuracy. c© 2002 Elsevier Science (USA)

Key Words: free surfaces, compressible liquid–gas flows, interface capturing,
Osher scheme, level-set method, interface-pressure error, ghost-fluid method.

1. INTRODUCTION

The present paper is directed towards an efficient, physically correct finite-volume com-
putation of the flow of two compressible fluids, e.g., water and air, at uniformly subsonic
speeds. Other premises are that the two fluids do not mix, that vaporization and condensation
phenomena do not occur and that surface tension can be neglected.

In recent years, various papers have been published that present specific finite-volume
methods for two-fluid flow computations. In most of these papers, a two-fluid flux formula is
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proposed in which an approximate Riemann solver is applied. In [1, 10], Roe-type schemes
are proposed and in [14], Rusanov-type and Harten–Lax–van-Leer-type schemes. In the
present paper, an Osher-type two-fluid flux formula is proposed. The formula is extremely
simple and computationally very efficient. At the boundaries of the computational domain,
it is completely consistent with that in the interior. The flux formula incorporates a level-set
term for accurately capturing the two-fluid interface.

A known difficulty of capturing contact discontinuities in a conservative formulation of
the compressible, two-fluid Euler equations is that large solution errors (often called pres-
sure oscillations) may arise near the contact discontinuity. For incompressible two-fluid
flow computations (see, e.g., [17]) the pressure-oscillation problem is much less severe
than for compressible since density is not used for further computations, such as the com-
putation of pressure from an equation of state. For tracking and fitting approaches the
pressure-oscillation problem does not exist at all. As far as conservative capturing methods
for compressible two-fluid flows are concerned, we remark that not all of these methods
are necessarily cursed with the pressure-oscillation problem; in [3] we propose a fully con-
servative formulation which, without any measure being taken, has no pressure error at
two-fluid interfaces.

Without remedial intervening, the conservative formulation considered in the present
paper also suffers from the pressure-oscillation problem. We will show this on the basis of
a model flow with a known exact solution. The solution error is proportional to the density
ratio across the interface. For large density jumps across the interface, the error may even
degenerate to instability. Fixes for the solution-error problem can be found in the literature.
We refer to the works of Karni [10, 11] and Abgrall [1], their common paper [2], and [5, 9,
14]. In most of the available literature though, the ratio of the two densities at the interface is
O(1)–O(102). To our knowledge, only in [5, 14] ratios of O(103), typical water–air ratios,
are considered. In the current paper a simple fix is proposed, which allows arbitrarily large
density ratios.

The contents of the paper is the following. In Section 2, the continuous flow model is
given: conservation laws, equations of state (for water and air), and level-set equation. In
Section 3, the space discretization of the equations is presented (the Riemann problem and
the corresponding Godunov-type scheme, at both interior and boundary cell faces). Next,
in Section 4, we analyze the solution-error problem near interfaces. In Section 5, some ap-
proaches to fix the problem are addressed. Not all of these approaches (some already known)
appear to work for water–air flow with its large density jump. One fix is proposed which
works perfectly, it is a simple variant of the ghost-fluid method [5]. In Section 6, numerical
results are presented for compressible water–air flows. In Section 7, we outline the extension
of our method to multidimensional problems, and in Section 8 the paper is concluded.

2. FLOW MODEL

2.1. Conservation Equations

In 1D, for a sufficiently small control volume �, conservation of mass and momentum
reads

∫
�

∂

∂t

(
ρ

ρu

)
dx +

(
ρu

ρu2 + p

)
∂�right

−
(

ρu

ρu2 + p

)
∂�left

= 0, (1)



656 KOREN ET AL.

with ρ the bulk density

ρ = α(x, t)ρw(p) + (1 − α(x, t))ρa(p), (2)

where α is, e.g., the volume-of-water fraction and ρw(p) and ρa(p) are the equations of
state for water and air, respectively. To balance system (1) and (2), the equations of state and
an equation determining the location of the interface (and hence α) still have to be chosen.

With the above bulk-density formulation, in a finite-volume discretization, total mass of
the fluid will be conserved, but not necessarily the masses of the two separate fluids. When
α(x, t) is poorly resolved, the two separate masses are poorly conserved as well. Hence, an
accurate resolution of the interface location(s) is of paramount importance. For this purpose,
we follow a level-set approach, to be discussed in the next section.

2.2. Level-Set Equation

To accurately resolve the interface location(s), a level-set approach [16] is more appropri-
ate than the classical volume-of-fluid (VOF) approach [8] because of its better smoothness
(and thus accuracy) properties at precisely the point of interest: the interface. Good smooth-
ness of the level-set function is first taken care of in the level-set function’s initialization. A
common approach is to initialize the level-set function as the signed distance to the initial
interface, with the distance positive in, e.g., water and negative in air. (To get uniformly
smooth level-set functions in the case of multiple interfaces, advantage may be taken of
nonlinear initializations [12].)

Keeping the level-set function smooth requires some attention. During the computation,
the level-set function may need to be regularized. In this reinitialization step, care needs to
be taken that the free-surface location is preserved. In brief, the reinitialization can be done
as follows. After one or more time steps the locations of the interfaces are determined as
the zeros of the level-set function. Next, the level-set function is simply reinitialized as the
signed distance to the nearest interface.

Denoting the level-set function by φ, in 1D, it is advected by

∂φ

∂t
+ u

∂φ

∂x
= 0. (3)

Combined with the bulk-mass conservation equation from (1), advection equation (3) may
be written in the conservative control-volume form

∫
�

∂(ρφ)

∂t
dx + (ρuφ)∂�right − (ρuφ)∂�left = 0. (4)

Conservation of ρφ is not physical; there is no conservation law for it. The form (4) is
simply practical because it is consistent with system (1); it can be directly embedded into
it. With φ(x, t) known, the VOF function α can be computed for any finite volume. In
Section 3.2, for an equidistant 1D finite-volume grid, α = α(φ) is worked out in detail; in
Section 7.1 we outline the extension to multiple dimensions (multi-D).

Summarizing, the VOF fraction is used, not the VOF method. In the VOF method, a
transport equation for α is used. Instead, here we apply a transport equation for φ (in the
consistent form of a conservation equation for ρφ).
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FIG. 1. Pressure–density diagrams.

2.3. Equation of State

In homentropic water–air computations, for both fluids, elegant use can be made of a
single equation of state, viz. Tait’s,

p + Bpref

(1 + B)pref
=
(

ρ

ρref

)γ

, (5)

where the subscript ref indicates some reference state. The reference pressure pref is chosen
freely but equally for the two fluids. The value of ρref for each of the two fluids corresponds
with pref and is read from standard data bases for fluid properties. Concerning the material
constants γ and B, for water: γ = 7 and B = 3000, and for air γ = 7

5 and B = 0. With (5),
both the water and air densities, ρw(p) and ρa(p), are convex functions of pressure. So is the
corresponding bulk density ρ according to (2). The physical consequences of this overall
convexity are that neither locally low speeds of sound (lower than in pure water or pure air)
nor expansion shocks can occur. In two-phase approaches these phenomena can occur [7].
For these flows, the pressure-density diagram may look as sketched in Fig. 1a, i.e., as a mixed
convex–concave curve with extremely small values of the speed of sound, c = dp/dρ, in the
condensation/vaporization zone. As opposed to that, in the present case of two immiscible
fluids, a family of purely convex curves exists, curves that become increasingly steep for
increasing α (Fig. 1b). So, for any p and for all values of α ∈ (0, 1) it holds that ca < c < cw.
A slight inconvenience of using (2) in combination with (5) is that the calculation of p for
known ρ and α (α �= 0 and α �= 1) needs to be done iteratively.

3. DISCRETIZATION

3.1. Finite Volumes

Summarizing, for a (sufficiently small) control volume �, the system of equations con-
sidered reads

∫
�

∂q

∂t
dx + ( f (q))∂�right − ( f (q))∂�left = 0, q =




ρ

ρu

ρφ


, f (q) =




ρu

ρu2 + p

ρuφ


, (6a)
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ρ = α(φ)ρw(p) + (1 − α(φ))ρa(p), (6b)

ρw(p) =
(

p + Bw pref

(1 + Bw)pref

) 1
γw

(ρw)ref, ρa(p) =
(

p

pref

) 1
γa

(ρa)ref, (6c)

with α(φ) the fraction of the size of � over which φ ≥ 0. Two early papers that considered
the computation of compressible water–air flows are [4, 6]. A basic difference between the
present two-fluid flow equations and those from [4, 6] is that in the latter the third equation
is the energy equation, whereas here it is the level-set equation.

3.2. Volume-of-Fluid Fraction

The natural space discretization for (6) is a finite-volume technique. For convenience, we
consider cell-centered finite volumes with constant mesh size. This choice directly allows
us to work out the discretization of α(φ). Consider finite volume �i and its left and right
neighbors, �i−1 and �i+1, respectively, and define the level-set values at the cell faces
∂�i− 1

2
and ∂�i+ 1

2
as

φi− 1
2
= 1

2
(φi−1 + φi ), φi+ 1

2
= 1

2
(φi + φi+1). (7)

Then, for example, for φi ≥ 0, we propose the four αi possibilities given in Fig. 2.
So, in determining φi− 1

2
and φi+ 1

2
, as well as x(φ = 0), we make use of piecewise linear

interpolation of φ. The linear interpolation is exact as long as the level-set function is the
signed-distance function.

3.3. Riemann-Problem Approach

The challenge of a finite-volume formulation is to choose or devise a physically correct
two-fluid flux formula to apply at the low discrete level of cell faces. The exact solution
of the 1D Riemann problem at each cell face, the well-known Godunov approach, requires
the use of a numerical root finder. We avoid this by considering an approximate Riemann
solver. For this, we prefer a two-fluid version of Osher’s [13], particularly because of its
consistent boundary-condition treatment. Denoting the left and right cell-face states by q0

FIG. 2. Four possible combinations of signs of φi− 1
2

and φi+ 1
2

, for φi ≥ 0, together with corresponding
formulae for VOF fraction αi .
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and q1 and the flux formula by F(q0, q1), the Osher scheme may be written as

F(q0, q1) = f (q0) +
∫ q1

q0

d f −

dq
dq, (8)

with d f −/dq the negative eigenvalue part of d f/dq. The eigenvalues of the present Jacobian
are λ1 = u − √

∂p/∂ρ, λ2 =u , and λ3 = u + √
∂p/∂ρ. (∂p/∂φ does not occur in the wave

speeds.) The Riemann-invariant relations describing the two intermediate states q 1
3

and q 2
3

along the wave path in state space for λ1, λ2, and λ3 successively are

u 1
3
+
∫ ρ 1

3 1

ρ

√
∂p

∂ρ
dρ = u0 +

∫ ρ0 1

ρ

√
∂p

∂ρ
dρ, φ 1

3
= φ0, (9a)

u 1
3
= u 2

3
= u 1

2
, p 1

3
= p 2

3
= p 1

2
, (9b)

u 2
3
−
∫ ρ 2

3 1

ρ

√
∂p

∂ρ
dρ = u1 −

∫ ρ1 1

ρ

√
∂p

∂ρ
dρ, φ 2

3
= φ1. (9c)

Hence, the level-set function φ can only change along the subpath corresponding to the
eigenvalue λ2, i.e., across the contact discontinuity. It is invariant along the outer subpaths;
physically speaking, if φ is the signed-distance function, along the outer subpaths the
distance to the two-fluid interface is constant. The integrals in (9a) and (9c) can be written
explicitly for the equations of state given in (6c). However, when, e.g., a water–air interface is
captured, the explicit calculation of u 1

2
and p 1

2
is hampered by nonlinearity; a transcendental

equation then needs to be solved.

3.4. Linearized, Two-Fluid Osher Scheme

Since φ is constant along the two outer subpaths of the wave path, along both subpaths
the bulk density can only vary due to pressure changes. For flows that are low-subsonic,
large pressure and hence large bulk-density changes will not occur and, consequently, the
integrals

∫ ρ 1
3 1

ρ

√
∂p

∂ρ
dρ and

∫ ρ 2
3 1

ρ

√
∂p

∂ρ
dρ

can be linearized by good approximation around ρ0 and ρ1, respectively, yielding for (9a)–
(9c)

u 1
2
= u0 − (ρ 1

3
− ρ0

) c0

ρ0
, u 1

2
= u1 + (ρ 2

3
− ρ1

) c1

ρ1
. (10)

Likewise, p 1
2

can be linearized around ρ0 and ρ1 as

p 1
2
= p0 + (ρ 1

3
− ρ0

)
c2

0, p 1
2
= p1 + (ρ 2

3
− ρ1

)
c2

1. (11)

Elimination of ρ 1
3
− ρ0 and ρ 2

3
− ρ1 from (10) and (11) gives

p 1
2
−p0

u 1
2
− u0

= −ρ0c0 and
p 1

2
−p1

u 1
2
− u1

=
ρ1c1, i.e.,

(
u 1

2

p 1
2

)
=

 C0u0 + C1u1 + (p0 − p1)

C0 + C1

C1 p0 + C0 p1 + C0C1(u0 − u1)

C0 + C1


, C0 ≡ ρ0c0, C1 ≡ ρ1c1. (12)
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For the density and level-set function in the two intermediate points it holds that

(
ρ 1

3

φ 1
3

)
=

ρ0 + p 1

2
− p0

c2
0

φ0


,

(
ρ 2

3

φ 2
3

)
=

ρ1 + p 1

2
− p1

c2
1

φ1


 . (13)

Ignoring all supersonic possibilities among all possible combinations of signs of u0 − c0,
u 1

2
− c 1

3
, u 1

2
+ c 2

3
, and u1 + c1 (note the consequent efficiency improvement in checking

eigenvalue signs), the linearized, two-fluid scheme reads

F(q0, q1)u 1
2
≥0 =




ρ 1
3

u 1
2

ρ 1
3

u2
1
2
+ p 1

2

ρ 1
3

u 1
2
φ 1

3


, F(q0, q1)u 1

2
≤0 =




ρ 2
3

u 1
2

ρ 2
3

u2
1
2
+ p 1

2

ρ 2
3

u 1
2
φ 2

3


 . (14)

We remark that the real nonlinear flux functions f (q 1
3
) and f (q 2

3
) are applied and not

F(q0, q1)u 1
2
≥0 = f (q0) + (q 1

3
− q0

)d f (q0)

dq
,

F(q0, q1)u 1
2
≤0 = f (q1) + (q 2

3
− q1

)d f (q1)

dq
.

There is no need for the latter linearized formulae. On the contrary, as opposed to (12)–(14),
they may give rise to an erroneous, ambiguous flux at u 1

2
= 0 (steady contact discontinuity);

f (q0) + (q 1
3
− q0) [d f (q0)/dq] and f (q1) + (q 2

3
− q1) [d f (q1)/dq] may differ for u 1

2
= 0.

3.5. Boundary-Condition Treatment

A very favorable property of the Osher scheme is that the fluxes across the boundary
faces can be computed with the same formula as that for the interior faces, i.e., with (14).
Denoting the state at the boundary by qb, in the case of a left boundary q0 = qb and in the case
of a right q1 = qb. We work out the inflow and outflow boundaries and the nonpermeable
boundary as a limit case. For all three it holds that for boundaries at the left and right,
respectively,

pb − p1

ub − u1
= C1,

pb − p0

ub − u0
= −C0. (15)

3.5.1. Inflow boundary. From (15), it follows that the two boundary conditions to be
imposed here cannot be ub and pb simultaneously; when ub is imposed, pb follows, and vice
versa. Hence, the second boundary condition must be one for φb. To compute the boundary
flux, the 0D bulk density ρb still needs to be defined. An appropriate 0D choice is

(ρb)φb≥0 = ρw(pb), (ρb)φb<0 = ρa(pb). (16)

3.5.2. Outflow boundary. Here, in addition to (15), the equations

φb = φ0, φb = φ1 (17)

are available. So, the single boundary condition to be imposed must be ub or pb or some
combination of both. The bulk density ρb is defined as in the inflow case.
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3.5.3. Nonpermeable boundary. At a nonpermeable boundary (at least) ub = 0 must be
imposed, which, given (15), already determines pb. Considering a nonpermeable boundary
as the limit case of an inflow boundary, φb must still be imposed. Considering it as the limit
of outflow, φb follows from the interior solution (φb = φ1 for a left boundary and φb = φ0

for a right). The outflow-limit case is to be preferred. As opposed to the inflow-limit case, it
allows the interface to freely move along the nonpermeable boundary. Also here, the bulk
density may be defined according to (16).

4. ERROR NEAR INTERFACE

In the present section we analyze the pressure-oscillation problem for the equations in
system (6). Similar analyses for other systems of equations have already been given in [2,
9, 10].

4.1. Analysis for Model Flow

Consider a 1D tube with unit length, x ∈ [0, 1], inflow of water at x = 0, outflow at x = 1,
and the initial solution

u(x, t = 0) = U > 0, p(x, t = 0) = P,

ρ(x, t = 0) =
{

ρw(P), x ≤ (xfs)t=0,

ρa(P), x > (xfs)t=0,

(18)

where U and P are constant and where xfs is the location of the free surface, i.e., the water–
air interface. For t > 0, the corresponding exact Euler flow solution reads u(x, t) = U ,
p(x, t) = P , ρ(x, t) = ρw(P) for x ≤ (xfs)t=0 + Ut and ρ(x, t) = ρa(P) for x > (xfs)t=0 +
Ut . This simple model flow precisely uncovers the deficiency of capturing methods with
regard to material interfaces. For the space discretization of (6) we consider an equidistant
finite-volume grid with mesh size h. For the time integration, the forward-Euler scheme is
taken. The space discretization is taken as first-order accurate. Then, denoting the solution
in cell i at the old time level by qn

i , q = (ρ, ρu, ρφ)T , the equation for the solution qn+1
i at

the new time level is

qn+1
i = qn

i − �t

h

(
F
(
qn

i , qn
i+1

)− F
(
qn

i−1, qn
i

))
, (19)

with �t the time step and F the linearized, two-fluid Osher flux (14). Considering the
situation where qn

i−1, qn
i , and qn

i+1 are according to the initial solution (18), with (xfs)
n =

xi− 1
2

(Fig. 3), (19) yields


 ρ

ρu

ρφ




n+1

i

= σρw(P)


 1

U
h
2


+ (1 − σ)ρa(P)


 1

U

− h
2


, σ ≡ U�t

h
. (20)

Note that ρn+1
i according to (20) is exact, as is un+1

i = (ρu)n+1
i /ρn+1

i = U. However, for
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FIG. 3. Bulk-density distribution near cell i at time level n and water–air interface at xi− 1
2

.

φn+1
i it follows from (20) that

φn+1
i = (ρφ)n+1

i

ρn+1
i

= σρw − (1 − σ)ρa

σρw + (1 − σ)ρa

h

2
, (21)

whereas the exact discrete solution reads (φn+1
i )exact = −h/2 + σh. Hence, for the local

discretization error �φn+1
i = φn+1

i − (φn+1
i )exact it holds that

�φn+1
i = σ(1 − σ)

ρw − ρa

σρw + (1 − σ)ρa
h. (22)

So, �φn+1
i = 0 only if σ = 0 (trivial), σ = 1, or ρw = ρa . The local discretization error (22)

is O(h), but cannot be made of higher order by applying a higher order discretization.
(This holds for any numerical flux function F .) Higher than first-order accuracy is simply
inhibited by the bulk density, which is a smeared representation of the exact discrete density.
Through bulk-density formula (6b), the error (22) carries over into a pressure error �pn+1

i .
Given �ρn+1

i = 0, from (6b) it follows after linearization that

�pn+1
i = −c2

wc2
a(

αn+1
i + �αn+1

i

)
c2

a + (1 − αn+1
i − �αn+1

i

)
c2
w

(ρw − ρa)�αn+1
i . (23)

From Fig. 2 we know that besides depending on �φn+1
i , �αn+1

i also depends on �φn+1
i−1

and �φn+1
i+1 . For the model flow considered, it follows with the current scheme that φn+1

i−1 =
h/2 + σh and φn+1

i+1 = −3h/2 + σh, which are both the exact results. With the formulae
from Fig. 2, the expressions found for the error �αn+1

i = αn+1
i − (αn+1

i )exact are

(
�αn+1

i

)
φn+1

i ≥0 =
(

3

2
− σ

)
�φn+1

i

h + �φn+1
i

,

(24)(
�αn+1

i

)
φn+1

i <0 =
(

1

2
+ σ

)
�φn+1

i

h − �φn+1
i

.

So, �αn+1
i =O(h0), say O(1), and hence with (23), the pressure error �pn+1

i also is O(1).
Moreover, the pressure error (23) is proportional to the density ratio ρw/ρa .
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4.2. Guidelines for Error Improvements

Before proposing ways to improve the poor local error behavior near the interface, it is
useful to consider the conservative equations near the two-fluid interface and to make an
error analysis of bulk-density relation (6b).

4.2.1. Fluid-flow equations near interface. Consider the situation in which the interface
is in cell � = �i (only the interface, so no shock or rarefaction). Since velocity and pressure
are continuous across the interface, for sufficiently small �i , we may then write by good
approximation ui− 1

2
= ui+ 1

2
= ui and pi− 1

2
= pi+ 1

2
. With this, (1) can be rewritten as a system

of advection equations for the entire solution vector qi ,∫
�i

∂q

∂t
dx + ui

(
qi+ 1

2
− qi− 1

2

)= 0. (25)

Contact discontinuities are linear phenomena. If all conservative solution components are
advected, ρi , (ρu)i , and (ρφ)i , then any solution component in �i (either conservative or
nonconservative) is advected. That is, in (25) for a cell with only a contact discontinuity,
instead of the fully conservative solution representation qi = (ρi , (ρu)i , (ρφ)i ) we may
equally well consider, e.g., the partially conservative representation qi = (ρi , (ρu)i , φi ), the
fully nonconservative representation qi = (ui , pi , φi ), or other representations.

4.2.2. Error analysis of bulk-density relation. Errors in the pressure and VOF fraction
(�p and �α) induce an error in the bulk density (�ρ), which, given (6b), satisfies the
equation

ρ + �ρ = (α + �α)ρw(p + �p) + (1 − α − �α)ρa(p + �p). (26)

For the model flow and discretization method considered in Section 4.1, we found �ρ = 0
and �α =O(1). Then, according to (26), �p =O(1) as well, which agrees with what we
derived in Section 4.1. Instead of the zeroth-order pressure error �p described by (23) and
(24), we ideally prefer �p = 0, which implies according to (26) that

�ρ = �α(ρw(p) − ρa(p)). (27)

One of the fixes considered in the following section is to make the numerical method such
that the updates �ρ and �α exactly satisfy (27).

5. FIXES FOR ERROR IN CELL WITH INTERFACE

5.1. Advection of Level-Set Function

This approach is based on the observation made in Section 4.1 that the update of φn
i

through division of (ρφ)n+1
i by ρn+1

i leads to an O(h) accuracy barrier in φn+1
i because of

the intrinsic smearing in the bulk-density representation itself. For the update of the real
physical quantities ρi and (ρu)i we may stick to the conservative formulation and, hence,
to the linearized, two-fluid Osher scheme. Doing so, with the forward-Euler, first-order
upwind discretization of the single advection equation∫

�i

∂φ

∂t
dx + ui

(
φi+ 1

2
− φi− 1

2

)= 0, (28)
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for the model flow considered—in addition to ρn+1
i and (ρu)n+1

i according to (20)—we get

φn+1
i = −h

2
+ σh, (29)

which is exact (because φ has been defined as the signed-distance function). Because
�φn+1

i = 0, it also holds that �αn+1
i = 0. Since �ρn+1

i = 0 as well (Section 4.1), it then
follows from (26) that �pn+1

i = 0. In all other cells, the fully conservative scheme (19)
is applied, yielding the exact discrete solution. However, at time level n + 2 the numer-
ical solution is no longer exact; ρn+2

i = 2σρw + (1 − 2σ)ρa − σ 2(ρw − ρa), whereas
(ρn+2

i )exact = 2σρw + (1 − 2σ)ρa . Hence, �ρn+2
i = −σ 2(ρw − ρa) =O(1). With the

forward-Euler, first-order upwind discretization of (28), �φn+2
i = 0 and, as a consequence,

�αn+2
i = 0. With (26) and �ρn+2

i =O(1), it then follows that �pn+2
i =O(1). So, this par-

tially conservative approach is not a fix. With some tricks one can make the method work.
Taking for the left and right cell-face densities to be substituted into the linearized, two-fluid
Osher scheme, instead of the bulk densities, the local cell-face densities (pure water or pure
air) at t = tn , the method works as long as the interface does not cross a cell face during a
time step. That is, the method works for σ = 1/m, with m an integer. Unfortunately, this
requirement on σ is too restrictive for the method to be of practical use.

5.2. Advection of Velocity, Pressure and Level-Set Function

Taking in (25) qi = (ui , pi , φi ), with (ui− 1
2
, pi− 1

2
) = (ui+ 1

2
, pi+ 1

2
), the exact result be-

comes


 u

p

φ




n+1

i

=

 u

p

φ




n

i

+

 0

0
σh


 =


 U

P

− h
2 + σh


 . (30)

However, in cell �i+1 an error arises; qn+1
i+1 and qn+2

i+1 are still exact, qn+1
i+1 = (U, P, − 3

2 h +
σh) and qn+1

i+2 = (U, P, − 5
2 h + σh). But for t = tn+2 we find that ρn+2

i+1 = ρa + σ 2(ρw − ρa).
For σ < 1/2, this is wrong; water is erroneously transported from cell i into cell i + 1.
The corresponding error reads �ρn+2

i = σ 2(ρw − ρa) =O(1). Meanwhile, for σ < 1/2
such that φn+2

i+ 1
2
= φn+2

i+ 3
2

are both still negative, we correctly find αn+2
i+1 = 0. So, with (26)

it then follows that �pn+2
i+1 =O(1) and therefore this approach is not viable.

5.3. Advection of Density and Algebraic Update of VOF Fraction

In Section 4.2 it was shown that if the updates �ρ and �α are such that (27) is satisfied,
then �p = 0. We now will try a possible fix based on (27). Consider the advection equation∫

�i

∂ρ

∂t
dx + ui

(
ρi+ 1

2
− ρi− 1

2

)= 0. (31)

The updates for ρi , rendered by (31), may be directly translated through (27) into updates
for αi . However, as with the fully nonconservative approach from Section 5.2, in the second
time step anO(1) pressure error arises in neighboring cell �i+1, when the fully conservative
approach is still applied there. Moreover, even in a better case, the present approach will
yield an exact pressure solution at the expense of a diffused density profile.
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In [15], a VOF-fraction formulation is considered which is suitable for the computation
of both mixtures of fluids and (immiscible) multifluids and which appears not to suffer
from the pressure-oscillation problem. This is probably due to the fact that, as mentioned in
Section 3.4 of [15], boundary conditions are imposed at the interface (tracking rather than
capturing).

5.4. Ghost-Fluid Method

A perfect fix for the pressure-oscillation problem is a simple variant of the ghost-fluid
method [5]. In [5], the ghost-fluid method is introduced for the nonhomentropic Euler
equations of gas dynamics. For our more compact system of fluid flow equations, we
propose a variant, which is comparable to that proposed by Abgrall and Karni [2].

In updating the finite-volume solutions with a single explicit time step, the following is
done. For convenience, suppose we have an equidistant, cell-centered finite-volume grid
�i , i = 1, 2, . . . , N , with the cell faces denoted by ∂�i+ 1

2
, i = 0, 1, . . . , N , with ∂� 1

2
and

∂�N+ 1
2

the faces at the domain boundaries. Also suppose that at time level n we have a
known, unique solution (un

i , pn
i , φn

i ), i = 1, 2, . . . , N . Then, as first step, at the actual time
level n, the cells and cell faces are classified into different types. For cells, the following
three types are distinguished: (i) pure-water cells, (ii) pure-air cells, and (iii) cells with one
(or two) interface(s). To make this classification, we determine φn

i+ 1
2
, i = 0, 1, . . . , N . At

the interior faces we take

φn
i+ 1

2
= 1

2

(
φn

i + φn
i+1

)
, i = 1, 2, . . . , N − 1. (32a)

At the inflow-boundary face, say ∂� 1
2
, we take

φn
1
2
= φn

b , (32b)

with φn
b denoting the boundary condition, and at the outflow boundary, say ∂�N+ 1

2
,

φn
N+ 1

2
= φN . (32c)

Then, cell �i is (i) a pure-water cell if φn
i > 0, φn

i− 1
2

> 0, and φn
i+ 1

2
> 0, (ii) a pure-air

cell if φn
i < 0, φn

i− 1
2

< 0, and φn
i+ 1

2
< 0, or (iii) a cell with one or two interfaces. Cells of

the third type are named ghost cells. This classification is also applied to the cell faces;
(i) pure-water, (ii) pure-air, and (iii) ghost faces are distinguished. The two faces of a ghost
cell are both identified as ghost faces. That is, if �i is a ghost cell, then both ∂�i− 1

2
and

∂�i+ 1
2

are ghost faces. A cell face not belonging to a ghost cell is—depending on the sign
of φ at that face—either a pure-water or a pure-air face. Across the latter two types of faces,
the flux is simply computed with the single-fluid flux formula

F(q̃0, q̃1) =
(

ρ 1
2
u 1

2

ρ 1
2
u2

1
2
+ p 1

2

)
, with either ρ 1

2
= ρw

(
p 1

2

)
or ρ 1

2
= ρa

(
p 1

2

)
, (33)

where the left and right cell-face states are expressed as q̃ ≡ (u, p). As in (14), u 1
2

and p 1
2

are given by (12), but now with either (C0, C1) = (C0, C1)w (pure water) or (C0, C1) =
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(C0, C1)a (pure air). So, across pure-water faces we get F = Fw and across pure-air faces
F = Fa . Across the ghost faces two fluxes are computed: a water and an air flux, i.e., both

Fw(q̃0, q̃1) =
(

ρ 1
2
u 1

2

ρ 1
2
u2

1
2
+ p 1

2

)
, ρ 1

2
= ρw

(
p 1

2

)
, (34a)

and

Fa(q̃0, q̃1) =
(

ρ 1
2
u 1

2

ρ 1
2
u2

1
2
+ p 1

2

)
, ρ 1

2
= ρa

(
p 1

2

)
, (34b)

with u 1
2

and p 1
2

given by (12) and for (34a), (C0, C1) = (C0, C1)w and for (34b), (C0, C1) =
(C0, C1)a . Applying the forward-Euler scheme, the subsequent update of finite-volume
solutions—expressed in conservative variables, q = (ρ, ρu)—reads

(i) in pure-water cells,

qn+1
i = qn

i − �t

h

(
(Fw)n

i+ 1
2
− (Fw)n

i− 1
2

)
, (35)

(ii) in pure-air cells,

qn+1
i = qn

i − �t

h

(
(Fa)

n
i+ 1

2
− (Fa)

n
i− 1

2

)
, and (36)

(iii) in ghost cells,

(qw)n+1
i = qn

i − �t

h

(
(Fw)n

i+ 1
2
− (Fw)n

i− 1
2

)
and (37a)

(qa)
n+1
i = qn

i − �t

h

(
(Fa)

n
i+ 1

2
− (Fa)

n
i− 1

2

)
. (37b)

So, in ghost cells we are left with two possibly different updated solutions: qw and qa .
Expressed in q̃ = (u, p) variables, these two new ghost solutions will not differ very much
for the flows considered here. For the 1D problem introduced in Section 4.1, both solutions
will be identical. (When allowing shock waves, the two solutions in a ghost cell may
significantly differ from each other, if the ghost cell also contains a shock wave.) In case
a solution ambiguity arises, we proceed as follows. From the updated level-set function
(updated separately through an advection equation), the VOF fraction αn+1

i in the ghost cell
can be computed. Next, the updated solution in the ghost cell is simply made unique with

q̃n+1
i = αn+1

i (q̃w)n+1
i + (1 − αn+1

i

)
(q̃a)

n+1
i . (38)

There are no physical or mathematical arguments for applying this weighting; other choices
are possible.

In the computation of the fluxes, we use the same unique values of u and p in each
cell, which ensures that the free-surface conditions are satisfied implicitly. In [5], for the
nonhomentropic Euler equations of gas dynamics, entropy is extrapolated across the inter-
face. The present homentropic equations require no solution-component extrapolation.
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In the ghost-fluid method the interface is no longer captured at the lowest discrete level,
that of the cell face, but at the next higher level, the cell. Because fluxes are always of the
single-fluid type in the ghost-fluid method, explicit calculation of u 1

2
and p 1

2
can be easily

done by using, e.g., the full, nonlinear Osher scheme instead of a linearized scheme.

6. NUMERICAL RESULTS

6.1. Water Front at Constant Speed and Pressure

The first test case to be considered is the 1D tube flow from Section 4.1. Numerical
values to be used are (xfs)t=0 = 0.5 (initial interface halfway tube) and (xfs)t=0 = 0 (initial
interface at inlet boundary), U = 1, P = 1, ρw(P) = 1, ρa(P) = 0.001 (other values are
considered as well), γw = 7, γa = 7/5, Bw = 3000, and Ba = 0. According to the speed-
of-sound relations

c2
w = γw

(1 + Bw)p

ρw

, c2
a = γa

p

ρa
,

these values imply cw(P) ≈ √
15 ca(P), which agrees fairly well with standard sea-level

conditions. As in Section 4, the grids to be used are equidistant. The boundary condi-
tions to be imposed are u(x = 0, t) = U, φ(x = 0, t) = Ut , and p(x = 1, t) = P . The
space discretization is first-order accurate, as in Section 4.1. Time integration is done with
the forward-Euler scheme, with the time step constant and sufficiently small to guarantee
stability:

�t = σ
h

U + cw(P)
, σ < 1.

6.1.1. Fully conservative approach. This is the approach without any fixes for solution
errors near the interface. For the above numerical values, the computation breaks down.
The stumbling block is the large density ratio. In Fig. 4, pressure errors are depicted for
computations with three still rather small density ratios, ρw/ρa = 2, 4, and 8, after 10,
20, and 40 time steps. The time step on the coarsest grid is twice as large as that on the
middle grid and four times larger than that on the finest grid. No results were obtained for
ρw/ρa = 8 after 40 time steps. The pressure error appears to be about linearly proportional to
the number of time steps taken. In agreement with the theoretical findings, it also increases
with the density ratio ρw/ρa . The latter increase is clearly nonlinear. With the conservative
approach, results for ρw/ρa = 1000 are still far out of reach. The deceptive performance
of the conservative approach was expected given the analytical results of Section 4.1. (The
behavior is typical for most conservative formulations but not intrinsic to all [3].)

6.1.2. Advection of level-set function. Here the fix proposed in Section 5.1 is numer-
ically investigated. It is applied not only in the cell in which the interface actually is, but
also in its left and right neighbor cells. The fix clearly gives an improvement as compared
to the fully conservative approach but is not adequate. For (xfs)t=0 = 0 and ρw/ρa = 10, in
each of the three graphs in Fig. 5 we present the computed bulk-density profiles at t = 0.0,
0.1, 0.2, . . . , 1.0. The results are perfect as far as the capturing of the interface is concerned;
capturing over a single mesh width h only (thanks to the level-set approach). However, they
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FIG. 4. Pressure-error distributions by the fully conservative approach (solid lines, h = 1/10; coarsely dashed
lines, h = 1/20; finely dashed lines, h = 1/40).

are cursed with a pressure error, which for ρw/ρa = 10 is still negligibly small, but which,
as in the previous section, grows nonlinearly with increasing density ratio ρw/ρa . Results
similar to those in Fig. 5 cannot be obtained for ρw/ρa = 1000, not even for ρw/ρa = 100.
From Fig. 6 it appears that the pressure error grows exponentially with ρw/ρa .
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FIG. 5. Bulk-density profiles at t = 0.0, 0.1, 0.2, . . . ,1.0, fix with advection of level-set function, ρw/ρa = 10.

6.1.3. Advection of velocity, pressure, and level-set function. Here, the fix proposed in
Section 5.2 is tested. The advection of u, p, and φ is applied to the cell with the interface as
well as to its left and right neighboring cells. The fix is an improvement compared to that
with advection of φ only, but it does not work satisfactorily either. Capturing is again perfect,
but the method also breaks down for increasing density ratio ρw/ρa , for ρw/ρa = 100 after
t = 0.7, and for ρw/ρa = 1000 after t = 0.4 (Fig. 7).

6.1.4. Ghost-fluid method. The fix proposed in Section 5.3 is not tested; its expected
smearing of the density excludes it as an interesting option here. However, the ghost-fluid
method described in Section 5.4 is interesting. It works (Fig. 8); it gives perfectly sharp
interfaces and does not break down with increasing density ratio. As opposed to the previous
methods it works for standard water–air conditions, ρw/ρa =O(103). For the problem at
hand, it even works for arbitrarily large density ratios (Fig. 9). Reinitialization of the level-set
function is not necessary for the running water front.

6.2. Oscillating Water Column

Although the previous constant-speed-and-pressure test case is not trivial from a numer-
ical point of view, from a physical perspective it is. For the second test case, we consider

FIG. 6. Pressure-error distributions at t = 0.1 for ρw/ρa = 70(+), 75(×), and 80(∗), fix with advection of
level-set function, h = 1/40.
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FIG. 7. Bulk-density profiles at t = 0.0, 0.1, 0.2, . . . , 1.0, fix with advection of velocity, pressure, and level-set
function, h = 1/40.

FIG. 8. Bulk-density profiles at t = 0.0, 0.1, 0.2, . . . , 1.0, ghost-fluid method, h = 1/40.

FIG. 9. Bulk-density profiles at t = 0.0, 0.1, 0.2, . . . , 1.0, ghost-fluid method, extremely high density ratios,
h = 1/40.
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FIG. 10. Initial condition: shut off tube with column of water (grey) in between two columns of air, all three
columns flowing to the right at constant speed U and pressure P.

a closed 1D tube (i.e., with impermeable boundaries at the left and right), with the initial
solution as sketched in Fig. 10. Starting from t = 0, the air at the right is compressed by
the water and the air at the left expands. Hence, a pressure difference is built up across the
column of water, with a consequent deceleration of the latter’s flow to the right, followed
by stagnation, and then an acceleration and flow to the left. This leads to a reverse pressure
gradient across the water, which redirects the flow from left to right again, and so on. The
water column starts to oscillate.

We present numerical results obtained through the ghost-fluid method. As for the previous
test case, we take γw = 7, γa = 7/5, Bw = 3000, Ba = 0, ρw(P) = 1, and ρa(P) = 0.001.
Further, we take U = 1, P = 1, and xfs = 0.1.

6.2.1. Pressure behavior. An equidistant grid with h = 1/40 is applied. The space dis-
cretization is again first-order accurate and time integration is done again with the forward-
Euler scheme. The level-set function is taken as the signed-distance function. For this
test case, as opposed to the foregoing, the level-set function is reinitialized. (The reini-
tialization is done after each time step.) Fig. 11 shows the time evolution of the pressure
coefficients

P(x = −1, t) ≡ p(x = −1, t) − P

P
, P(x = 1, t) ≡ p(x = 1, t) − P

P
.

The ghost-fluid method appears to work fine.

6.2.2. Conservation errors. In the ghost cells, the conservation laws are applied to
ghost (i.e., virtual) amounts of water and air, not to the real physical amounts. Therefore,
conservation of the real amounts of mass and momentum in these cells is not guaranteed.

FIG. 11. Time evolution of pressure coefficients at left and right boundaries (solid line, left boundary; dashed
line, right boundary), h = 1/40.
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FIG. 12. Time evolution of relative error in total mass of air in shut off tube.

In Fig. 12a we give the time evolution of the relative mass error

M(t) ≡ ma(t) − ma(0)

ma(0)
,

where ma(t) is the total mass of air in the tube at time t . The air-mass error appears to be
composed of two components: one oscillating and the other behaving linearly in time. The
total mass of air is slowly decreasing; air is being converted into water. Fortunately, the
orders of both the oscillatory and the linear error component are close to the computational
method’s order of accuracy, which is first order. To show the latter, in Fig. 12b the time
evolution of the relative air-mass error is given for a grid and time step twice as fine as those
in Fig. 12a. (The orders of accuracy of the oscillatory and linear error component in going
from h = 1/40 to h = 1/80 appear to be 0.78 and 0.90, respectively.)

7. EXTENSION TO MULTIPLE DIMENSIONS

In this section, the extension to multi-D of the best performing method, the ghost-fluid
method, is outlined. For convenience, we consider the extension to 2D only. The subsequent
extension to 3D is rather straightforward. We consider quadrilaterals as finite volumes in
2D.

7.1. Interface Location and VOF Fraction

As in 1D, to identify cells intersected by the two-fluid interface (ghost cells), we first in-
terpolate the cell-center values of the level-set function φ to the cell vertices. For sufficiently
smooth grids, this interpolation may be simply done as

φi+ 1
2 , j+ 1

2
= 1

4
(φi, j + φi+1, j + φi, j+1 + φi+1, j+1). (39)

(If desired, it may be done more accurately by grid-dependent bilinear interpolation.) Know-
ing the values of φ in the cell centers and cell vertices, we can determine for each cell the
VOF fraction α in the following way. If for a cell, φ has the same sign in its center and
four vertices (e.g., a positive sign, Fig. 13a), that cell is fully filled with one of the two
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FIG. 13. Six possible combinations of signs of φ at the four vertices of a quadrilateral finite volume, assuming
φ to be positive in the finite volume’s center (dashed lines indicate the two-fluid interface).

fluids (α = 1 or α = 0). If φ does not have the same sign in its center and four vertices, we
assume linear distributions of φ along the cell faces connecting two vertices with different
sign of φ, as well as along the line segments connecting the cell center and a cell vertex
with different sign of φ. Given these linear distributions, the locations of the interface along
these cell faces and line segments can be determined. Next, assuming a piecewise linear
shape of the interface in between the latter locations (Figs. 13b–13f), the VOF fractions can
be calculated.

7.2. Flux Computation

In all cells intersected by an interface (ghost cells), as in 1D, we compute both a ghost-
water and a ghost-air flux across all four faces. Across all other cell faces, depending on
the sign of φ, either pure-water or pure-air fluxes are computed. All flux computations can
be done in a standard, locally 1D manner, i.e., by considering the flux at each cell face as
the solution of a Riemann problem normal to that cell face. An ambiguity in the ghost-fluid
solution may be removed through a formula analogous to (38).

8. CONCLUSIONS

To accurately compute compressible, immiscible two-fluid flows with very large density
differences (such as water–air flows), we have proposed a method that uses a level-set
technique to distinguish between the two fluids. The level-set equation has been incorporated
consistently into the system of hyperbolic conservation laws. The resulting equations have
been discretized through a finite-volume method. To compute the fluxes across the finite-
volume faces (the level-set flux being one of the flux-vector components), we have proposed
a linearized, two-fluid Osher scheme. The scheme allows a physically correct capturing of
the interface across a single cell face, as well as a neat boundary-condition treatment (for
example, no sticking of interfaces to solid walls). The novel scheme combines good physical
properties with great simplicity and efficiency.

To avoid large solution errors near interfaces, which is a problem for many conserva-
tive capturing methods, four fixes have been proposed, three consisting of some locally
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advective solution update and the fourth a ghost-fluid fix. For density ratios of order 1000
(typical water–air ratio) the advective fixes fail in the analyses as well as in the numerical
experiments. In contrast, the simple ghost-fluid technique does work. Even the computation
of fronts running into a vacuum (ρw/ρa = ∞) is expected to be possible with the ghost-fluid
method. Extension of the method to higher order accuracy is straightforward through the use
of, e.g., a MUSCL approach and a multistage time integrator. (For flow problems such as the
running water front considered in this paper, higher order accuracy is not necessary; already
the first-order-accurate discretization method—thanks to the level-set approach—captures
the interface over the distance of a single mesh width only.) Concerning the extension to
higher dimensions of the ghost-fluid method, no principal difficulties exist.
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